metrix

Burton DeWilde

Oct 17, 2020

1 installation
2 overview
3 example

4 performance

API REFERENCE:

4.1 metric coordinator e e e e e e e e e e e e e e

4.2 metric stream
4.3 metric sinks .
4.4 metric element

5 indices and tables
Python Module Index

Index

11
11
14
16
17

19

21

23

metrix

metrix is a Python library for tracking metrics through streams, with configurable tagging, batching, aggregating,
and outputting of individual elements. It’s designed for handling multiple metrics collected individually at high rates
with shared output destinations, such as a log file and/or database, especially in the case that outputting metrics is only
required or desired at lower rates.

APl REFERENCE: 1

metrix

2 APl REFERENCE:

CHAPTER
ONE

INSTALLATION

This package hasn’t yet been published to PyPi (working on it...), but is still readily installable via pip:

$ python -m pip install git+https://github.com/bdewilde/metrix.git#egg=metrix

As usual, this will also install direct dependencies — st reamz and toolz — as well as a few other packages needed
for them to work.

metrix

4 Chapter 1. installation

CHAPTER
TWO

OVERVIEW

Users’ entry into met rix is primarily through the MCoordinator class. It coordinates the flow of metric elements
through one or multiple streams into one or multiple output destinations (called “sinks”), with an optional rate limit
imposed before each sink to avoid any problematic pileups.

Configuration is left up to users, since it’s entirely dependent on specific contexts and use cases. There are a few key
considerations:

* the metrics to track: their names; any tags to apply to elements by default; how often to batch elements, either
in time or number; and the aggregation(s) to be performed on batches of values

* what to do with the aggregated metrics: where results should go, and if they should be submitted at throttled
rates

It’s important to note that a single metric stream may output multiple aggregated values per batch, since each unique
(name, aggregation, tags) combination is grouped together before sending them on to their destinations.

metrix

6 Chapter 2. overview

CHAPTER
THREE

EXAMPLE

Let’s say we want to track the total number of articles published to a news site in 5-minute tumbling windows, as well
as the total and average word counts per batch. We also want to tag articles by the section in which they’re published,
but this is only needed for the total published counts. Lastly, we’d like to log the aggregated results for diagnostic
purposes.

How can we do this with met rix?

>>> import logging, statistics
>>> from metrix import MCoordinator, MStream, MSinkLogger
>>> # configure MC with metric streams and sinks
>>> mc = MCoordinator (
mstreams=[
MStream (
"n_articles", # metric name
agg=sum, # function to get the total number per batch
ce default_tags={"section": "NA"}, # default article tag, to avoid null
—values
window_size=300, # aggregate every 300 seconds (5 minutes)
)I
MStream (
"wec", # metric name (shorthand for "word count")
c agg=[sum, statistics.mean], # functions to get total and average,
—values
window_size=300, # same as n_articles, tho this isn't required
)I
JV
msinks=[
MSinkLogger (level=logging.INFO), # log agg'd metrics at "info" level
JV
rate_limit=0.5, # impose a half-second rate limit for [technical reason]
)
>>> # fake articles data (but let's pretend)
>>> articles = |

{"text": "...", "section": "politics"},
{"text": "...", "section": "science"},
{"text": "..."}, # missing section!

]
>>> # send metric elements for each article into corresponding streams via the MC
>>> for article in articles:
mc . send (
"n_articles", # metric name
1, # metric value, to be aggregated with other values
tags={"section": article["section"]} if article.get ("section") else None,

(continues on next page)

metrix

(continued from previous page)

)
.. mc.send ("wc", len(article["text"].split()))
>>> # five minutes later... (fake aggregated metrics data, but again, let's pretend)
INFO:metrix.sinks:MElement (name='n_articles.sum', value=625, tags={'section':
—'politics'})

INFO:metrix.sinks:MElement (name='n_articles.sum', value=290, tags={'section': 'science
—"'})
INFO:metrix.sinks:MElement (name='n_articles.sum', value=35, tags={'section': 'NA'})

INFO:metrix.sinks:MElement (name='wc.sum', value=161690, tags=None)
INFO:metrix.sinks:MElement (name='wc.mean', value=170.2, tags=None)

With the optional networkx and graphviz dependencies installed, we can easily visualize what the corresponding
collection of metric streams and sinks looks like:

>>> mc.stream.visualize (filename=None)

8 Chapter 3. example

metrix

@by_[imc limecl_windo@

filter; group_has_elements
group_by_key map; partial @by_lime [imed_windn@

e s s >
w group_by_key map; partial

/ sink; MSinkLogger \

n_articles sum map; partial

metrix

10 Chapter 3. example

CHAPTER
FOUR

PERFORMANCE

metrix provides features and an API tailored to a particular use case — “metrics tracking through streams” — but
under the hood, st reamz and toolz do the heavy lifting. As such, this package’s performance is largely dependent

on theirs. According to the docs, st reamz adds microsecond overhead to typical Python operations.

In practical terms, met rix can process up to about 7500 metric elements per second (not including any I/O costs as-
sociated with sinks, such as network connections or disk writes). This throughput doesn’t vary much by the complexity

of the input or output streams; it’s dominated by the total number of messages sent in.

4.1 metric coordinator

class metrix.coordinator.MCoordinator (%, mstreams:

Op-

tional[Sequence[metrix.stream.MStream]] = None,
msinks: Optional[Sequence[metrix.sinks.MSink /]

= None, rate_limit: Optional[Union[int,
Sequence[Union[int, float]]]] = None)

float,

Class that coordinates the flow of metric elements through one or multiple streams into one or multiple sinks,

with an optional rate limit imposed before the end.

Here are a few simple examples to illustrate key features:

>>> import statistics, time

>>> from metrix import MCoordinator, MStream, MSinkLogger, MSinkPrinter

>>> # one stream, one agg, one sink

>>> mc = MCoordinator (
mstreams=[MStream("n", agg=sum, batch_size=2)],
msinks=[MSinkPrinter ()],

o)

>>> mc.send("n", 1)

>>> mc.send("n", 2)

MElement (name=n.sum, value=3, tags=None)

>>> # one stream, two aggs, two sinks

>>> mc = MCoordinator (
mstreams=[MStream("n", agg=[max, statistics.mean], batch_size=3)],
msinks=[MSinkPrinter (), MSinkLogger ()],

o)

>>> mc.send("n", 1)

>>> mc.send("n", 2)

>>> mc.send("n", 3)

MElement (name=n.max, value=3, tags=None)

MElement (name=n.mean, value=2, tags=None)

INFO:metrix.sinks:MElement (name=n.max, value=3, tags=None)

INFO:metrix.sinks:MElement (name=n.mean, value=2, tags=None)

(continues on next page)

11

https://streamz.readthedocs.io/en/latest/core.html#performance
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

metrix

(continued from previous page)

>>> # two streams, default and element tags, and a timer

>>> mc = MCoordinator (
mstreams=[
MStream("n", agg=sum, batch_size=3, default_tags={"foo": "bar"}),

MStream("time", agg={"avg": statistics.mean}, window_size=1),
I
msinks=[MSinkPrinter ()],

o)
>>> mc.send("n", 1)
>>> mc.send("n", 1)

>>> mc.send("n", 1, tags={"foo": "BAR!"})
MElement (name=n.sum, value=2, tags={'foo': 'bar'})
MElement (name=n.sum, value=1, tags={'foo': 'BAR!'})

>>> with mc.timer ("time", scale=1):
. time.sleep(0.5)
>>> with mc.timer ("time", scale=1):
time.sleep(0.75)
>>> with mc.timer ("time", scale=1):
time.sleep(0.5)
>>> with mc.timer ("time", scale=1):
L time.sleep(0.25)
MElement (name=time.avg, value=0.5028860028833151, tags=None)
MElement (name=time.avg, value=0.7517436337657273, tags=None)
MElement (name=time.avg, value=0.377787658944726, tags=None)

In typical production usage, you’ll be tracking a few metrics and periodically logging and/or sending aggregated
values to TSDB. Here’s how that might look:

>>> from metrics import MSinkTSDB
>>> mc = MCoordinator (
mstreams=[
MStream("n_msgs", agg=sum, window_size=3),
. MStream("msg_len", agg=[statistics.mean, statistics.stdev], window_
—size=b)
] 14
msinks=[MSinkLogger (), MSinkTSDB(<TSDB_CLIENT>)],
rate_limit=[0, 1.0],
)
>>> msgs = list (range(10)) # fake data ;)
>>> for msg in msgs:
mc.send ("n_msgs", 1)
.. mc.send ("msg_len", msqg)
INFO:metrix.sinks:MElement (name=n_msgs.sum, value=10, tags=None)
INFO:metrix.sinks:MElement (name=msg_len.mean, value=4.5, tags=None)
INFO:metrix.sinks:MElement (name=msg_len.stdev, value=3.0276503540974917,
—tags=None)

Parameters

* mstreams — One or more MStream s through which metric elements are sent. Typ-
ically provided on init, but may also be passed individually via MCoordinator.
add_mstream().

* msinks — One or more MSink s to which metric elements are sent. Typically provided
on init, but may also be passed individually via MCoordinator.add _msink (). In a
development context, the simple MSinkPrinter will give visibility into the outputs of
metric streams, but in a production, you’ll want to specify more persistent metric sinks like

Chapter 4. performance

metrix

MSinkLogger and MSinkTSDB.

* rate_limit — Optional rate limit that prevents two metric elements from streaming into
a sink in an interval shorter than rate_limit seconds. If a single number, this is applied
to all msinks; if a sequence of numbers with the same length as msinks, limits will be
applied element- wise to the corresponding metric sinks.

For example: rate_limit=1.5 causes elements to be sent on to each sink in msinks
at least 1.5 seconds apart. If rate_limit=[1.5, 0.5] (and two sinks are specified),
then the first sink will have a 1.5-second rate limit while the second will have a 0.5-second
rate limit applied.

Warning: If MSinkTSDB is added as a sink, be sure to have rate_limit set to at least 1.0 seconds to
prevent data loss, since OpenTSDB doesn’t support sub-second data. (Yes, I know — it’s bonkers.)

Given this constraint, you must also be mindful of the total number of unique metric (name, agg, tags)
pairs passing through mstreams per second to ensure that the output sinks can keep up with the rate of
input metrics. For example, if 2 streams use a single aggregator with default window_size=10 and
rate_limit=1.0, then you should limit yourself to no more than 5 distinct tag sets per metric. If you
have more tags or aggs, increase your window size accordingly! Here’s a useful formula:

sum ((num_aggs * num_unique_tag_sets / window_size) for stream in mstreams) =
—num_total_metrics_per_sec

If num_total_metrics_per_sec > rate_limit, you have a problem.

stream
Base metric coordinator stream, to which metric streams connect and from which metric sinks extend.

metric_mstreams
Mapping of metric name to metric stream, each of which is upstream from and connected to
MCoordinator.stream.

msinks
Sequence of metric sinks, each of which is downstream from and connected to MCoordinator.
stream.

add_mstream (mstream: metrix.stream.MStream) — None
Add a metric stream to this coordinator by connecting it to all sink streams and making it accessible by
name via MCoordinator.metric_mstreams.

add_msink (msink: metrix.sinks.MSink, rate_limit: Optional[Union[int, float]] = None) — None
Add a metric sink to this coordinator by branching off MCoordinator. stream with a buffered, op-
tionally rate-limited stream that ends in msink.

send (name: str, value: Union[int, float], *, tags: Optional[Dict] = None) — None
Send a metric value to a particular metric stream; optionally, pass tags to add new and overwrite existing
default tags associated with the stream.

Parameters
* name — Metric name.
¢ value — Numeric metric value.
* tags — Optional tags to associate with this specific metric value.
See also:

MStream.send ()

4.1.

metric coordinator 13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

metrix

timer (name: str, scale: int = 1, *, tags: Optional[Dict] = None)
Get a context manager for a particular stream that measures the elapsed time spent running statements
enclosed by the with statement, and sends that time to the stream.

Parameters

* scale — Multiplier applied to the elapsed time value, in seconds by default. For example,
to report time in milliseconds, use scale=1000.

* tags — Optional tags to associate with this specific timer value.
See also:

MStream.timer ()

4.2 metric stream

class metrix.stream.MStream (name: str, * agg: Union[Callable[[Iterable[Union[int, float]]],
Union[int, float]], Sequence[Callable[[Iterable[Union[int, float]]],
Unionfint, float]]], Mapping[str, Callable[[Iterable[Union[int,
float]]], Union[int, float]]]], default_tags: Optional[Dict] = None,
window_size: Optional[int] = None, batch_size: Optional[int] =

None)
A stream of ME1ement s that groups elements into batches of fixed time or number, further groups batches by

distinct assigned tags, then aggregates each group’s values by one or multiple functions.

To do any useful work, metric streams must be connected to a MS1ink, which operates on elements in a visible
/ persistent way. In typical usage, you’ll want to connect multiple streams to multiple sinks using a centralized
coordinator: MCoordinator.

>>> from metrix import MElement, MStream

>>> eles = [{"value": 1}, {"value": 2}, {"value": 1, "tags": {"foo": "bar"}}]
>>> mstream = MStream("m", agg=sum, default_tags={"foo": "BAR!"}, window_size=1)
>>> # HACK! we'll add a sink directly so we can see what happens

>>> mstream.stream.sink (print)

>>> for ele in eles:

.. mstream.send (*x+ele)

MElement (name=m.sum, value=3, tags={'foo': 'BAR!'})

MElement (name=m.sum, value=1l, tags={'foo': 'bar'})
Parameters

¢ name — Name of the metric whose elements are sent into this stream.

* agg — One or multiple aggregation functions to be applied to groups of metric elements’
values in order to produce new, aggregated metric elements. This may be specified as a
single callable or a sequence of callables, in which case the corresponding components of the
MStream. st ream are named after the functions themselves; this may also be specified as
a mapping of component name to callable, in which case the user-specified names are used
instead.

* default_tags — Optional set of tags to apply to all metric elements by default. Tags
specified on individual elements override and append to this def

* window_size — Size of tumbling window in seconds with which to group elements. For
example: If window_size=10, all elements sent into the stream within a given 10-second
window will be grouped together before their values are aggregated, as specified by agg.

14 Chapter 4. performance

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

metrix

* batch_size — Size of batches in number of elements with which to group elements. For
example: If batch_size=10, every 10 successive elements sent into the stream will be
grouped together before their values are aggregated, as specified by agg. Note that setting
batch_size=1 will effectively skip grouping, in which case aggregating values doesn’t
make sense, either.

Note: You must set either window_size or batch_size when initializing a metric stream. No default
is set because it depends entirely on context: the rate with which metric elements are sent into the stream, the
desired resolution on aggregated metrics, and any rate limit requirements on connected metric sinks. This is the
only stream attribute that demands deliberate thought. Choose wisely! :)

name

agg
default_tags
window_size
batch_size

source
Entry point to the metric stream.

stream
Data processing stream to which metric elements are sent.

send (value: Union[int, float], *, tags: Optional[Dict] = None) — None
Send a given metric value to the stream; optionally, pass metric-specific tags to add new and overwrite
existing default tags associated with the stream.

Parameters
¢ value — Numeric metric value.
* tags — Optional tags to associate with this specific metric value.

timer (scale: int = 1, *, tags: Optional[Dict] = None)
Context manager that measures the elapsed time spent running statements enclosed by the with statement,
and sends that time to the stream.

Parameters

* scale — Multiplier applied to the elapsed time value, in seconds by default. For example,
to report time in milliseconds, use scale=1000.

* tags — Optional tags to associate with this specific timer value.
See also:
MStream.send ()

metrix.stream.group_has_elements (group: Sequence[metrix.element.MElement/) — bool
Return True if group contains any metric elements, and False otherwise; used to filter out empty group from a
metric stream.

4.2. metric stream 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

metrix

4.3 metric sinks

class metrix.sinks.MSink
Base class for subclasses that are called on a ME1ement and perform some useful action on it.

class metrix.sinks.MSinkPrinter
Class that’s called on a MEIement and prints it to stdout. That’s it! This class is useful in development when
experimenting with MCoordinator so users can see stream contents, but is not suitable for production.

>>> from metrix import MElement, MSinkPrinter
>>> msink = MSinkPrinter ()

>>> msink (MElement ("foo", 1))

MElement (name=foo, value=1l, tags=None)

class metrix.sinks.MSinkLogger (name: str = 'metrix.sinks’, level: int = 20, msg_fmt_str: str =
%s')
Class that’s called on a MEIlement and logs it, as-is.

>>> from metrix import MElement, MSinkLogger

>>> me = MElement ("foo", 1)

>>> msink = MSinkLogger ()

>>> msink (me)

INFO:metrix.sinks:MElement (name=foo, value=1, tags=None)

>>> msink = MSinkLogger (name="my-logger", level=30, msg_fmt_str="[metric] ")
WARNING:my—-logger: [metric] MElement (name=foo, value=1l, tags=None)

Parameters
* name — Name of the logger to use when logging metric elements.
* level - Level at which metric elements are logged.

* msg_fmt_str — Message format string into which metric elements are merged using a
string formatting operator. Must contain exactly one “%s” for a given MEIement; may
contain any other hard-coded text you wish.

logger
logging.Logger

level
int

msg_fmt_str
str

class metrix.sinks.MSinkTSDB (tsdb_client)
Class that’s called on a MEIlement and sends its data to OpenTSDB via an instantiated TSDB client.

Parameters tsdb_client — Instantiated TSDB client with a send method, such as potsdb.
Client.

tsdb_client

Note: It’s the user’s responsibility to ensure that a suitable TSDB client library is available in the environment
where this class is instantiated.

16 Chapter 4. performance

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger

metrix

4.4 metric element

class metrix.element .MElement (name: str, value: Union[int, float], *, tags: Optional[Dict] =

None)
An individual metric element — a single data point — to be sent through a stream and on to one or more sinks.

>>> from metrix import MElement

>>> me = MElement ("counts", 1, tags={"env": "dev", "foo": "bar"})
>>> print (me)
MElement (name="'counts', value=1l, tags={'env': 'dev', 'foo': 'bar'})

>>> me.key
'env:dev| foo:bar'

Parameters
* name — Base name of the metric to which the element belongs.
¢ value — Numeric value of the metric element.

* tags — Optional tags to associate with this (name, value) pair.

Note: In typical usage, users will not directly instantiate this class; instead, they’ll pass (name, value, tags) into
MCoordinator.send() or MCoordinator.timer (), which will create a corresponding MElement
under the hood.

metrix.element.key_f£from_tags (fags: Optional[Dict]) — Optional[str]
Generate a (hashable!) key string from a collection of tags, where tags are pipe-delimited and each tag’s field
and value are colon-delimited.

>>> key_from_tags({"foo": "bar})
"foo:bar"
>>> key_from_tags ({"foo": "bar", "bat": "baz"})

"bat :baz| foo:bar"

Note: The ordering of items in tags doesn’t matter, since the generated key is always ordered alphabetically.

metrix.element.tags_£from_key (key: Optional[str]) — Optional[Dict]
Generate a collection of tags from a key string, where tags are pipe-delimited and each tag’s field and value are
colon-delimited.

>>> tags_from_key (None)
None
>>> tags_from_key ("foo:bar")

{"fOO": llbar"}
>>> tags_from_key ("foo:bar|bat:baz")
{"bat": HbaZ", "fOO": "bar"}

Note: The ordering of items in key doesn’t matter, since the generated tags items are always ordered alpha-
betically.

See also:

key_from tags ()

4.4. metric element 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

metrix

18 Chapter 4. performance

CHAPTER
FIVE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

19

metrix

20 Chapter 5. indices and tables

m

metrix.
metrix.
metrix.
metrix.

coordinator, 11
element, 17
sinks, 16
stream, 14

PYTHON MODULE INDEX

21

metrix

22 Python Module Index

A

add_msink ()
method), 13

add_mstream()
method), 13

agq (metrix.stream.MStream attribute), 15

B

batch_size (metrix.stream.MStream attribute), 15

D

default_tags (metrix.stream.MStream attribute), 15

G

group_has_elements () (in module metrix.stream),
15

(metrix.coordinator.MCoordinator

(metrix.coordinator.M Coordinator

K

key_from_tags () (in module metrix.element), 17

L

level (metrix.sinks.MSinkLogger attribute), 16
logger (metrix.sinks.MSinkLogger attribute), 16

M

MCoordinator (class in metrix.coordinator), 11
MElement (class in metrix.element), 17
metric_mstreams (metrix.coordinator.MCoordinator
attribute), 13
metrix.coordinator
module, 11
metrix.element
module, 17
metrix.sinks
module, 16
metrix.stream
module, 14
module
metrix.coordinator, 11
metrix.element, 17
metrix.sinks, 16

INDEX

metrix.stream, 14

msg_fmt_str (metrix.sinks.MSinkLogger attribute),
16

MSink (class in metrix.sinks), 16

MSinkLogger (class in metrix.sinks), 16

MSinkPrinter (class in metrix.sinks), 16

msinks (metrix.coordinator.MCoordinator attribute),
13

MSinkTSDB (class in metrix.sinks), 16

MStream (class in metrix.stream), 14

name (metrix.stream.MStream attribute), 15

S

send () (metrix.coordinator.MCoordinator method), 13

send () (metrix.stream.MStream method), 15

source (metrix.stream.MStream attribute), 15

stream (metrix.coordinator.MCoordinator attribute),
13

st ream (metrix.stream.MStream attribute), 15

T

tags_from_key () (in module metrix.element), 17

timer () (metrix.coordinator.MCoordinator method),
13

timer () (metrix.stream.MStream method), 15

tsdb_client (metrix.sinks. MSinkTSDB attribute), 16

W

window_size (metrix.stream.MStream attribute), 15

23

	installation
	overview
	example
	performance
	metric coordinator
	metric stream
	metric sinks
	metric element

	indices and tables
	Python Module Index
	Index

